Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Machine Learning By Example
  • Toc
  • feedback
Python Machine Learning By Example

Python Machine Learning By Example

By : Yuxi (Hayden) Liu
4.9 (9)
close
Python Machine Learning By Example

Python Machine Learning By Example

4.9 (9)
By: Yuxi (Hayden) Liu

Overview of this book

The fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.
Table of Contents (18 chapters)
close
16
Other Books You May Enjoy
17
Index

Best practices in the deployment and monitoring stage

After performing all processes in the previous three stages, we now have a well-established data preprocessing pipeline and a correctly trained prediction model. The last stage of a machine learning system involves saving those resulting models from previous stages and deploying them on new data, as well as monitoring their performance and updating the prediction models regularly. We also need to implement monitoring and logging to track model performance, training progress, and potential issues during training.

Best practice 19 – Saving, loading, and reusing models

When machine learning is deployed, new data should go through the same data preprocessing procedures (scaling, feature engineering, feature selection, dimensionality reduction, and so on) as in the previous stages. The preprocessed data is then fed into the trained model. We simply cannot rerun the entire process and retrain the model every time new data...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete