Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Simplifying Data Engineering and Analytics with Delta
  • Table Of Contents Toc
  • Feedback & Rating feedback
Simplifying Data Engineering and Analytics with Delta

Simplifying Data Engineering and Analytics with Delta

By : Anindita Mahapatra
4.9 (15)
close
close
Simplifying Data Engineering and Analytics with Delta

Simplifying Data Engineering and Analytics with Delta

4.9 (15)
By: Anindita Mahapatra

Overview of this book

Delta helps you generate reliable insights at scale and simplifies architecture around data pipelines, allowing you to focus primarily on refining the use cases being worked on. This is especially important when you consider that existing architecture is frequently reused for new use cases. In this book, you’ll learn about the principles of distributed computing, data modeling techniques, and big data design patterns and templates that help solve end-to-end data flow problems for common scenarios and are reusable across use cases and industry verticals. You’ll also learn how to recover from errors and the best practices around handling structured, semi-structured, and unstructured data using Delta. After that, you’ll get to grips with features such as ACID transactions on big data, disciplined schema evolution, time travel to help rewind a dataset to a different time or version, and unified batch and streaming capabilities that will help you build agile and robust data products. By the end of this Delta book, you’ll be able to use Delta as the foundational block for creating analytics-ready data that fuels all AI/BI use cases.
Table of Contents (18 chapters)
close
close
1
Section 1 – Introduction to Delta Lake and Data Engineering Principles
5
Section 2 – End-to-End Process of Building Delta Pipelines
13
Section 3 – Operationalizing and Productionalizing Delta Pipelines

Data governance

Data democratization and self-service capabilities are some of the advantages of data lakes. A data governance layer is imperative to put the right guardrails in place while allowing stakeholders to get the most business value from the generated and curated data and insights. A good data catalog is essential for producing actionable insights in any data-driven organization. Cloud vendors have their own offerings, such as AWS Glue, Azure Purview, and Azure Data Catalog. Apache Atlas is probably the most popular open source offering, and there are vendors who specialize in this area such as Alation and Collibra.

The three primary goals of governance are the following:

  • Keeping data secure and only the right privileges and roles dictate access to data
  • Ensuring the quality of the stored data is high so that it is meaningful to its consumers, who then develop trust in their data and hence the insights generated on top of the data
  • Discovering data so that...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY