Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Advanced Deep Learning with R
  • Table Of Contents Toc
  • Feedback & Rating feedback
Advanced Deep Learning with R

Advanced Deep Learning with R

By : Rai
4.3 (3)
close
close
Advanced Deep Learning with R

Advanced Deep Learning with R

4.3 (3)
By: Rai

Overview of this book

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data. Advanced Deep Learning with R will help you understand popular deep learning architectures and their variants in R, along with providing real-life examples for them. This deep learning book starts by covering the essential deep learning techniques and concepts for prediction and classification. You will learn about neural networks, deep learning architectures, and the fundamentals for implementing deep learning with R. The book will also take you through using important deep learning libraries such as Keras-R and TensorFlow-R to implement deep learning algorithms within applications. You will get up to speed with artificial neural networks, recurrent neural networks, convolutional neural networks, long short-term memory networks, and more using advanced examples. Later, you'll discover how to apply generative adversarial networks (GANs) to generate new images; autoencoder neural networks for image dimension reduction, image de-noising and image correction and transfer learning to prepare, define, train, and model a deep neural network. By the end of this book, you will be ready to implement your knowledge and newly acquired skills for applying deep learning algorithms in R through real-world examples.
Table of Contents (20 chapters)
close
close
Free Chapter
1
Section 1: Revisiting Deep Learning Basics
3
Section 2: Deep Learning for Prediction and Classification
6
Section 3: Deep Learning for Computer Vision
12
Section 4: Deep Learning for Natural Language Processing
17
Section 5: The Road Ahead

Summary

In this chapter, we went through the steps for developing a prediction model when the response variable is of a numeric type. We started with a neural network model that had 201 parameters and then developed deep neural network models with over 7,000 parameters. You may have noticed that, in this chapter, we made use of comparatively deeper and more complex neural network models compared to the previous chapter, where we developed a classification model for the target variable that was of a categorical nature. In both Chapter 2, Deep Neural Networks for Multiclass Classification, and Chapter 3, Deep Neural Networks for Regression, we developed models based on data that was structured. In the next chapter, we move on to problems where the data type is unstructured. More specifically, we'll deal with the image type of data and go over the problem of image classification...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY