Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • R Deep Learning Essentials
  • Toc
  • feedback
R Deep Learning Essentials

R Deep Learning Essentials

By : Hodnett, Wiley
3.7 (3)
close
R Deep Learning Essentials

R Deep Learning Essentials

3.7 (3)
By: Hodnett, Wiley

Overview of this book

Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects.
Table of Contents (13 chapters)
close

Training a Prediction Model

This chapter shows you how to build and train basic neural networks in R through hands-on examples and shows how to evaluate different hyper-parameters for models to find the best set. Another important issue in deep learning is dealing with overfitting, which is when a model performs well on the data it was trained on but poorly on unseen data. We will briefly look at this topic in this chapter, and cover it in more depth in Chapter 3, Deep Learning Fundamentals. The chapter closes with an example use case classifying activity data from a smartphone as walking, going up or down stairs, sitting, standing, or lying down.

This chapter covers the following topics:

  • Neural networks in R
  • Binary classification
  • Visualizing a neural network
  • Multi-classification using the nnet and RSNNS packages
  • The problem of overfitting data—the consequences explained...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete