Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Data Structures and Algorithms
  • Toc
  • feedback
Python Data Structures and Algorithms

Python Data Structures and Algorithms

By : Benjamin Baka
2.7 (11)
close
Python Data Structures and Algorithms

Python Data Structures and Algorithms

2.7 (11)
By: Benjamin Baka

Overview of this book

Data structures allow you to organize data in a particular way efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. In this book, you will learn the essential Python data structures and the most common algorithms. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. You will be able to create complex data structures such as graphs, stacks and queues. We will explore the application of binary searches and binary search trees. You will learn the common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. We will also discuss how to organize your code in a manageable, consistent, and extendable way. The book will explore in detail sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. By the end of the book, you will learn how to build components that are easy to understand, debug, and use in different applications.
Table of Contents (14 chapters)
close
5
Stacks and Queues
7
Hashing and Symbol Tables

Runtime analysis

It should be becoming clear that an important aspect to algorithm design is gauging the efficiency both in terms of space (memory) and time (number of operations). This second measure, called runtime performance, is the subject of this section. It should be mentioned that an identical metric is used to measure an algorithm's memory performance. There are a number of ways we could, conceivably, measure run time and probably the most obvious is simply to measure the time the algorithm takes to complete. The major problem with this approach is that the time it takes for an algorithm to run is very much dependent on the hardware it is run on. A platform-independent way to gauge an algorithm's runtime is to count the number of operations involved. However, this is also problematic in that there is no definitive way to quantify an operation. This is dependent...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete