Book Image

Python Machine Learning

By : Sebastian Raschka
Book Image

Python Machine Learning

By: Sebastian Raschka

Overview of this book

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.
Table of Contents (21 chapters)
Python Machine Learning
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Unsupervised dimensionality reduction via principal component analysis


Similar to feature selection, we can use feature extraction to reduce the number of features in a dataset. However, while we maintained the original features when we used feature selection algorithms, such as sequential backward selection, we use feature extraction to transform or project the data onto a new feature space. In the context of dimensionality reduction, feature extraction can be understood as an approach to data compression with the goal of maintaining most of the relevant information. Feature extraction is typically used to improve computational efficiency but can also help to reduce the curse of dimensionality—especially if we are working with nonregularized models.

Principal component analysis (PCA) is an unsupervised linear transformation technique that is widely used across different fields, most prominently for dimensionality reduction. Other popular applications of PCA include exploratory data analyses...